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Introduction 

 

 
 
So, you might be asking, “Why would anyone create a hardware implementation of Sudoku?”  Or even, 
“What does this have to do with me and what I do?”  The simple answer is that we wanted a fun, thought-
provoking demo for DAC – and, it fits well with our electronic Sudoku giveaway.  The more serious 
answer starts with “we could, and easily, with Bluespec SystemVerilog”, but we’ll get into that a bit later.  
Most importantly, while this Sudoku implementation is a novelty of sorts, though a very complex one, it 
nicely illustrates how Bluespec’s ESL Synthesis technology effectively tackles key, contemporary System-
on-Chip (SoC) development issues: 
 

� How to test software early with accurate hardware representations 
� How to create intellectual property (IP) blocks that enable extreme reuse because they are highly 

parameterized and flexible to change 
� How to quickly implement designs that contain both extremely complex algorithms and complex 

concurrency, especially those with convoluted control logic and numerous shared resource 
hazards (it is often assumed that dealing with high complexity is only feasible in software) 

 
While we hope you enjoy this design, we also hope that it intrigues you to pursue Bluespec toolsets 
further.  Of course, Bluespec is typically used for more serious fare.  Our other DAC demos included an 
AXI® bus based design and an H.264 video decoder – and we’ve been used for DMA controllers, cache 
controllers, processors, network interfaces, and many more…   Upon learning more about Bluespec, we 
think you’ll be surprised at just how high-level it is possible to express implementations—and how 
Bluespec offers a unified environment for what are currently disparate activities: virtual prototyping, 
architectural modeling, verification and implementation. 
 
If you are not yet familiar with Bluespec, then prepare yourself for something very different from what you 
have seen or experienced before.  Though some vendors in the algorithm space have been successful at 
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efficiently synthesizing higher-level math/DSP designs, Bluespec is the only solution that succeeds both 
for control and complex datapaths.  We invite you to take a deeper look – the typical response we get 
upon learning about Bluespec is “Bluespec wasn’t what I expected at all”.  What you’ll find is truly unique, 
both in approach and results: 

� Elevated hardware design and modeling that keeps designers 100% in control of the architecture 
and micro-architecture of their implementations.  

� A unified environment for virtual prototyping, architectural exploration and IC implementation. 
� No opportunity cost in adoption.  As it layers incrementally on current flows – and generates 

readable, predictable Verilog RTL – Bluespec can be used one block at a time, without upending 
your current toolsets and methodologies.  With less than a week of training, designers have 
consistently completed their first project, including design and verification, in less than half the 
time compared to designing with RTL or SystemC. 

 
This document describes BluDACu, a Bluespec parameterized hardware implementation of Sudoku, 
including both puzzle generation and puzzle solving.  It should be a fun read – and illustrates powerful 
capabilities not before seen in hardware system design.  All this is made possible because of BSV's high 
level of abstraction, powerful types and strong static verifications, clean semantics based on atomic 
transactions (Rules) and atomic-transactional (Rule-based) Interfaces, and automatic regeneration of 
correct control logic as we substitute one component with another. 

BluDACu Overview 

You are probably familiar with the game of Sudoku.  If not, one resource is the Wikipedia entry: 
http://en.wikipedia.org/wiki/Sudoku.  Nowadays Sudoku puzzles seem to be offered in many daily 
newspapers, magazines and books, and there are also several Sudoku sites on the web.  The initial setup 
and the challenge are simply described.  You are given a 9x9 grid of cells, which can be further regarded 
as a 3x3 grid of boxes, each of which is a 3x3 grid of cells (see opening illustration in this document).  
Some of the cells are already filled in, the rest are blank.  The challenge is to fill in all the cells, where 
each cell contains a symbol (1-9), such that each 9-cell row, each 9-cell column, and each 3x3-cell box 
contains exactly one occurrence of each symbol 1 through 9.  A legal puzzle must have exactly one 
solution so that, in principle, it can be solved by pure reasoning, i.e., without any “guessing”. 
 
The usual 9x9 puzzle can be regarded as a special case of N x N puzzles, where N is a square.  We refer 
to the 9x9 puzzle as “order 3”, and you could also have “order 2” (4x4 cells with 2x2 boxes and using 
symbols 1-4), “order 4” (16x16 cells with 4x4 boxes and using symbols 1-9,A-G), and so on. 
 
BluDACu is a parameterized hardware implementation of the game of Sudoku.  The “order” of the puzzle 
is a parameter to the design, so that the same source code can be used for size 2x2, 4x4, 9x9, 16x16, 
and so on.  The implementation includes a puzzle generator, a puzzle solver, and a software-based GUI 
front-end to control the hardware and display the game for human play.  The following is a block diagram 
outlining the architecture of these components: 
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The implementation was done using Bluespec SystemVerilog (BSV) – alternatively, it could have been 
done using Bluespec’s ESE SystemC, which has the same notion of atomic transactions (Rules) and 
atomic-transactional interfaces.  The core of the design, the Sudoku generator and solver, and part of the 
surrounding testbench are in BSV.  The testbench makes calls to C functions using BSV’s DirectC 
interface – the BSV design and embedded C can be run at BSV source level using Bluesim, or at the RTL 
level, in Verilog, using standard Verilog simulators.  The BSV-generated Verilog can be further 
synthesized into FPGA or ASIC netlists, and run on an FPGA or in ASIC silicon. 

The general approach used in BluDACu 

The Sudoku solver was purposely developed to mimic the way a human solves the puzzle, so that we can 
provide the human player with meaningful assistance if he requests a hint—e.g., instead of just magically 
filling in the solution symbol for a blank cell, we can describe the reasoning process that solves that cell.  
Further, this structure also allows us to tune the level of difficulty of the generated puzzles. 
 
Our solver does not use “backtracking”, which is one of the “easy” ways to write a Sudoku solver in 
software, i.e., at each step, one could “guess” the solution for a blank cell and proceed, possibly realizing 
after many steps that the guess was wrong because it leads to an inconsistency.  Such a solver would 
require saving the state of the grid at this “guess point”, so that if the guess turned out be wrong, it could 
backtrack, or restore the grid state to this guess point, and make a different guess.  Of course, after 
making one guess it may be necessary to guess again for some other cell, and so on, so that at some 
point one may be “nested” in several levels of guesses.   Such a solver needs no further intelligence—it is 
a kind of “brute force” search of the solution space.  This is easy to do in software, but humans typically 
do not employ this approach, since backtracking is hard to do with pencil on a folded newspaper while 
hanging on to a strap on the morning bus or subway!  Further, in such a solver, it is not easy to provide a 
meaningful hint to the player at any intermediate point, i.e., a focused hint about how to solve a particular 
cell. 
 
Finally, a backtracking solver would be very bad for hardware implementation.  It would need much 
memory to save all the grid states at all the pending guess points, and it might consume a lot of power. 
 

Sudoku Testbench (BSV + C/C++) 

Embedded C/C++ with 
socket communications 

 
Sudoku 

Generator and 

Solver (BSV) 

C/C++ with socket 
communications 

TCL/TK GUI 

BluDACu 
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Instead, BluDACu works like a human solver,  repeatedly employing a tactic chosen from a repertoire of 
tactics (a “bag of tricks”).  Each successful application of a tactic makes concrete progress by solving one 
cell.  An example of a simple tactic applied to a particular cell is: 
 

Tactic elim_other_singletons: Eliminate as possibilities all symbols from this cell that already appear 
as the solution to any other cell in the same “constraint group” (same row, same column, or same 
box). 

 
Said in a reverse way, if you’ve already solved a cell, eliminate it as a possibility from all other cells in the 
same row, column or box.  A more complex tactic: 
 

Tactic repeated_2_set: If, in a constraint group (row, column, box) of this cell A,  two other cells B 
and C contain the same “2-set” { j, k }, i.e., symbols j and k are the only remaining possibilities in 
cells B and C, then j and k can be eliminated from this cell A (because j  and k must be in the cells B 
and C, even though we may not yet know which one goes where). 

 
By repeatedly applying each tactic to each cell in the grid, and to each of the cell’s containing constraint 
groups (row, cell, box), steady progress is made until the puzzle is sovled.   Note that there is no 
guarantee that the repertoire of tactics is “complete”, i.e., that they are capable of solving any Sudoku 
puzzle.  The stronger the tactics, the more difficult the puzzle that can be solved.   BluDACu’s tactics 
succeed on many puzzles found in newspapers, books and web sites, including those that are labeled by 
their authors as “hard”, “difficult”, “evil”, etc.  (You will also see in the discussion below how easy it is to 
add a new tactic to the solver, when you discover one.) 
 

Expressive and parameterized data types 

 
The file Sudoku.bsv contains declarations for a number of the parameterized data types used in the 

solver.  For example: 
 

typedef Bit#(TSquare#(order)) Cell#(numeric type order); 

 
defines the type Cell#(O), the representation of a cell in an order O puzzle, to be a bit-vector of O

2
 bits.  

For example, in an order 3 puzzle, each cell has 9 bits.  This encodes which values are possible 
candidates for that cell.  When a value is ruled out at a particular cell location, its corresponding bit is 
cleared.  When only one bit remains set in the mask for a cell, the value of that cell has been determined 
(solved).  The declaration: 
 

typedef Vector#(rows, Vector#(cols, t)) 
        Grid#(numeric type rows, numeric type cols, type t); 

 
defines the type Grid(nr,nc,t) as a vector or nr rows containing a vector of nc columns containing items of 
some type t.  By parameterizing in this way, the type can be reused in various ways.  For example, the 
declaration: 
 

typedef Grid#(TSquare#(order), TSquare#(order), Reg#(Cell#(order))) 
        SudokuRegGrid#(numeric type order); 

 
defines the type of the “state” for the Sudoku solver of order O— it is a Grid with O

2
 rows and O

2
 columns 

of registers (type Reg#()), where each register contains a Cell value (bit vector of O
2
 bits).  But the Grid 

type can also be used to represent the abstract values in the Suduko grid: 
 

Grid#(TSquare#(order), TSquare#(order), Cell#(order)) 
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i.e., here the values in the grid are just Cell values, not registers.  Or, 
 

Grid#(order, order, Cell#(order)) 

 
can be used to represent the values in a box (e.g., a 3x3 box in a 9x9 puzzle).  Similarly: 
 

typedef Vector#(TSquare#(order), Cell#(order)) Group#(numeric type order); 

 
defines Group(O) as a parameterized type that is a vector of O

2
 cells.  It can be used to refer to the 

values in a row, column, or box of cells, each of the three kinds of “constraint groups”.  By parameterizing 
our tactics in terms of Groups, the same tactic can be used on rows, columns or boxes. 
 
This level of parameterization is made possible by Bluespec SystemVerilog and is not practical in legacy 
RTL languages.  The “order” parameter controls the size of the puzzle.  In general, an order O puzzle 
contains O

4
 cells arranged in an O

2
xO
2
 grid and each of the O

2 
rows, columns and boxes contains the 

symbols 1 through O
2
.  Thus, an order O puzzle requires O

6
 bits of state!   You see some hint of these 

“constraint” relationships (which you can think of as formal assertions) in the use of phrases like 
TSquare() in the above examples. 
 
The files SolveTest2.bsv and SolveTest3.bsv contain small unit-level testbenches for solvers of 

order 2 (4x4) and 3 (9x9), respectively.  In those files, you’ll see lines like 
 

SudokuSolver#(2) solver <- mkSudokuSolver(); 

 

and 
 

SudokuSolver#(3) solver <- mkSudokuSolver(); 

 
respectively.  This simple, single-parameter change, from 2 to 3, automatically adjusts a lot of generated 
hardware circuitry, including: 
 

� The bit-width of each cell value and cell register 
� The number of cell registers in each row and column 
� The width of arguments and results in the various interfaces 
� The scope of all of the functions for accessing and modifying Sudoku grids 
� The logic for each tactic 
� The number of tactic applications 
� The sequence of states in the solver FSM 
� The sequence of states in the generator FSM 
� The logic to place a given solved value somewhere in the grid 
� and so on. 

 
In other words, formal constraints like TSquare() are exploited by the BSV synthesizer to produce all the 
logic correctly sized for each order O of puzzle.  This correct-by-construction generation of datapath and 
control logic eliminates a large source of bugs encountered in legacy RTL. 

Helper functions, higher-order functions, and library functions 

Good BSV style typically involves heavy use of functions to encapsulate the abstract concepts of each 
application domain.  In legacy RTLs, function arguments and results are usually just bit-vectors and 
numeric types.  In BSV, argument and result types can be of any type at all, including Actions (e.g., 
encapsulating a set of register, memory or fifo ops), Rules (e.g., encapsulating a common set of 
behaviors), Modules, Interfaces, and so on.  The BSV libraries come with many small but useful 
predefined functions. 
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For example, several tactics require the concept of a cell with only 2 possible values, and this is easily 
defined using the supplied library function countOnes(): 
 

// Determine if a cell has only 2 possibilities 
function Bool is2set(Cell#(order) c); 
   return (countOnes(c) == 2); 
endfunction: is2set 

 

Similarly, to check if a cell value appears more than once in a constraint group, the library function 
countElem() is available, which counts how many times a particular value appears in a vector: 
 

// Determine if a value is repeated in a group 
function Bool repeated(Group#(order) g, Index#(order) n); 
   return (countElem(g[n],g) > 1); 
endfunction: repeated 

 

Beyond such simple utilities, BSV functions, both in the library and user-defined, can be extremely 
powerful because they are higher-order functions, i.e., an argument or result is itself a function.  For 
instance, the is2set()  function defined above can be used with the higher-order function map() to 
succintly define a mask which shows which cells in a constraint group have only 2 possible values: 
 

let two_set_mask = map(is2set, g); 

 
The map() function here applies the is2set() function to each cell in a group g (a vector of cells).  Each 
application or course returns a boolean for its particular cell, true if the cell is a 2-set and false otherwise.  
The map() function collects these boolean results and returns a vector of booleans, where the boolean is 
true only when the corresponding original cell was a 2-set.  Such a mask can, in turn, be applied to a 
constraint group to mask out cell values using another higher-order function, zipWith(): 
 

// Apply a mask bit to a cell value 
function Cell#(order) applyMask(Cell#(order) c, Bool m); 
   return (m ? c : impossible()); 
endfunction: applyMask 
 
// Mask several cells in a group 
function Group#(order) maskN(Group#(order) g, Mask#(order) m); 
   return zipWith(applyMask, g, m); 
endfunction: maskN 

 
The zipWith() library function takes a 2-argument function f() and two vectors A and B, applies f() to each 
corresponding pair of elements Aj and Bj , and returns a vector of all the results f(Aj,Bj). Here, the maskN() 
function uses it to return a vector created by applying the applyMask() function to corresponding elements 
of a constraint group g and a mask m. 
 
Given a group with some cells masked out, we can determine which values are still possible in the 
remaining cells by applying another higher-order library function, fold(): 
 

// Determine all values which are possible in a group 
function Cell#(order) possibles(Group#(order) g) 
   provisos(Add#(1,_,SizeOf#(Cell#(order)))); 
   return fold(\| , g); 
endfunction: possibles 

 
Here we are folding the bitwise-OR operator (“|”) over the cell values in the group.  This is different from a 
standard reduction-OR, because the result is more than 1-bit wide -- it is equivalent to several reduction-
OR operations applied in parallel across the bits of each cell value in the group.  The proviso phrase is a 
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constraint that cells in the group and in the result are at least one bit wide; such constraints are statically 
checked by the BSV compiler. 
 
Taking advantage of BSV's higher-order function capabilities leads to the development of a toolbox of 
(sometimes very small) functions that can be combined in different and powerful ways to define new 
hardware at a very high level of abstraction.  For example, the forced_in_intersection tactic combines the 
two functions shown above to provide a simple definition (in 1 line of code) of a quite complicated idea: 
 

// Tactic: If in a constraint group which intersects a constraint group 
//         containing this cell (but which does not itself contain the cell), 
//         a value does not appear in the portion outside of the 
//         intersection, then it must appear within the intersection and 
//         can therefore be eliminated from this cell. 
// Arguments: g - constraint group intersecting a group containing the cell 
//                but not containing the cell itself 
//            m - mask of the portion of g outside of the intersection 
method Cell#(order) forced_in_intersection(Group#(order) g, Mask#(order) m); 
   return possibles(maskN(g,m)); 
endmethod: forced_in_intersection 

 
This idea of using powerful function combination, which is sometimes found in very advanced software 
programming languages, is available in BSV and is fully synthesizable to hardware.  In fact, there is zero 
“function-calling overhead” in the hardware, because the BSV compiler inlines and optimizes these 
functions extensively, so that the hardware you obtain is exactly what you would have gotten, and often 
better than if you had painfully and laboriously written out all this functionality by hand in legacy RTL. 

Atomic-transactional, strongly-typed module interfaces 

In BSV, all module interfaces are transactional, i.e, instead of descending to signals, wires and timing 
diagrams of legacy RTL, we express interaction as a collection of interface methods.  Each method 
encapsulates a transaction, i.e., a higher-level of interaction with the module.  Moreover, these 
transactions support atomicity, i.e., they formally incorporate constraints on simultaneity—whether or not 
two transactions on a module can occur simultaneously (in the same clock), and order—if they can be 
invoked simultaneously, are there any ordering constraints due to the logical data flow from one 
transaction to the other inside the module?  Atomicity ensures that the system state is always kept 
consistent—this eliminates, by construction, many of the protocol and “race condition” bugs that are only 
found (painfully) in post-design verification of legacy RTL.  Maintaining consistent state requires control 
logic, which is automatically and correctly synthesized by the BSV compiler, whereas it must be 
laboriously (and often erroneously and unmaintainably) described explicitly by a designer using legacy 
RTL. 
 
The methods in the interface of a BSV module, like functions,  take arguments and return results, and 
these are strongly type-checked by the BSV compiler. 
 
For example, a key module in BluDACu is the mkTactics module (in file Tactics.bsv).  It encapsulates 

the solver’s “bag of tricks”, i.e., its repertoire of tactics.   It contains a method for each tactic.  The 
arguments to the tactic methods are typically the values of a constraint group (one row, column or box) 
along with the index of a distinguished cell within the group, and in some cases additional values from the 
grid.  Each tactic method returns a bitmask of the values allowed for the distinguished cell in the 
constraint group according to the tactic.   Its interface is shown below (the actual code also contains 
detailed comments explaining the tactics). 
 

interface Tactics#(numeric type order); 
   method Cell#(order) elim_other_singletons(Group#(order) g, 
                                                Index#(order) n); 
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   method Cell#(order) process_of_elimination(Group#(order) g,  
                                                Index#(order) n); 
   method Cell#(order) forced_in_intersection(Group#(order) g,  
                                                Mask#(order) m); 
   method Cell#(order) repeated_2_set(Group#(order) g, Index#(order) n); 
   method Cell#(order) hidden_pair(Group#(order) g, Index#(order) n);       
endinterface: Tactics 

 
Note that everything—the interface type itself, and method argument and result types, are parameterized 
by the order O of the puzzle.  This ensures that Groups have the correct number of cells, Masks have the 
correct number of bits, and Index values are sized correctly to address all of the cells in a Group, etc. 
If either the module implementing a Tactics interface or the module using it has a mismatched type, the 
compiler will detect the error during type-checking. 
 
Any mkTactics module implementing this interface is a purely abstract tactics module—it neither contains 
the actual Sudoku grid, nor does it refer to the grid in the method arguments or results.  Every tactic is 
expressed as an abstract function from constraint groups and cells and other arguments to new cell 
values.  It is left to an outer level module to extract constraint groups from the actual Sudoku grid, apply 
these tactics, and then to incorporate the new cell values back into the grid.  This also makes it easy to 
incorporate a newly discovered tactic, because it is not entangled with the specifics of the grid. 

Atomicity (correct-by-construction muxing and control logic) 

Each tactic is typically applied multiple times to different constraint groups.   For instance, 
elim_other_singletons is applied 3 times for each cell: once to look for singletons within the row, once 
within the column, and once within the box. 
 
Other tactics are applied in complicated ways that depend on the order of the puzzle.  For instance, 
forced_in_intersection is applied at each cell once for each constraint group which intersects a constraint 
group containing the cell but which does not contain the cell itself. 
 
In addition, many tactics operate on the same constraint groups.  This leads to a situation where there is 
potential sharing of the logic to extract constraint groups as well as the logic to implement tactics.  
Achieving this sharing requires separating the logic to extract constraint groups and the logic to 
implement each tactic on a generalized constraint group. 
 
Then, the correct constraint group and index number must be routed to the correct tactic logic each cycle.  
In legacy RTL this muxing of related control logic would be very complicated, but it has to be expressed 
by the designer.  Further, imagine the nightmare of having to add a new tactic (e.g., to strengthen the 
solver).  In BSV the correct muxing logic is automatically generated by the compiler.  All that appears in 
the BSV source is the definition of the constraint groups: 
 

Group#(order) current_row = getRow(grid, row); 
Group#(order) current_col = getColumn(grid, col); 
... 

 

and calls to the methods of the tactics module (within the apply()  function in file Solver.bsv): 
 

tactic_result = tactics.elim_other_singletons(g,i); 

 
The compiler analyzes which arguments are supplied to each method call in each cycle and inserts the 
correct muxing logic to connect the data to the tactic arguments.  The muxing doesn't clutter the code or 
the designer's mind.   Adding a new tactic is a trivial matter of just writing the new tactic itself—the 
compiler will take care of regenerating all the muxing and control logic implied by its interactions with 
other tactics. 
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Composable State Machines 

The solver is implemented as an FSM controlling the application of tactics to cells.  Each time a tactic is 
applied to a cell, the result of the tactic method is AND'ed into the cell's bit mask.  The solver simply 
sweeps across the grid of cells applying each tactic in turn to every cell. 
 
BSV includes a rich sub-language for describing FSMs and composing small fragments of FSMs into 
larger FSMs.  This has the dual advantage of allowing the design intent to be clearly expressed in the 
code, and making modification of the FSMs simple and error-free.  For example, the top-level of the 
solver FSM is defined as: 
 

Stmt tactic_sequence = 
  seq 
  while (True) 
  seq 
     action 
        found_inconsistent <= False; 
        all_cells_complete <= True; 
        made_some_progress <= False; 
     endaction 
     for (r <= 0; r < fromInteger(valueOf(size)); r <= r + 1) 
     seq 
        for (c <= 0; c < fromInteger(valueOf(size)); c <= c + 1) 
        seq 

    apply(… singleton tactic to row r …); 

    apply(… singleton tactic to column c …); 

    apply(… singleton tactic to box containing row r and column c …); 

              … similarly, apply tactics Elimination, Pairs, HiddenPairs … 
     
    for (t <= 0; t < fromInteger(valueOf(order)-1); t <= t + 1) 
    seq 
       apply(… intersect tactic to other col …); 
       apply(… intersect tactic to other row …); 
       apply(… intersect tactic to other box in box rank …); 
       apply(… intersect tactic to other box in box file …);       
    endseq 
        endseq 
     endseq 
     await(!results.notEmpty()); 
     if (found_inconsistent || all_cells_complete || !made_some_progress) 
        break; 
  endseq 
  endseq; 
 
FSM controller <- mkFSM(tactic_sequence); 

 

The code is fully parameterized on the size of the puzzle.   As written, it applies tactics sequentially, one 
at a time.  It is a trivial matter to change the order in which tactics are applied.  By changing the seq 
constructs to par, it is possible to apply tactics in parallel—of course, this could imply a lot more control 
logic because tactics may need simultaneous access to the Sudoku grid registers, depending on whether 
or not they are touching the same cells.  Further, if a new tactic is added, it is trivial to incorporate its 
invocation into the FSM.  These changes can imply major changes to the underlying hardware control 
logic, but it is all automatically regenerated by the BSV compiler. 
 
As the solver operates, it monitors its own progress to detect if any cell's mask becomes completely 
empty (indicating an inconsistent puzzle), to detect if every cell is complete (indicating the puzzle has 
been solved), and to detect if every tactic has been tried at every cell without eliminating any candidates 
(indicating the puzzle is underconstrained relative to the tactics applied). 
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The generator is implemented as an FSM layer above the solver.  It operates as follows.  Starting with an 
empty grid, it runs the solver until it stops making progress, i.e., it gets “stuck” because no tactics make 
any progress; then, it "promotes" a randomly chosen cell in the partial solution to a known cell in the 
puzzle, randombly fixing one of its possible values as the solution.  If the solver detects an inconsistency, 
the puzzle is discarded and the generator restarts.  When the solver reaches a complete solution, the 
cells which were promoted to known values form the initial “given” cells in the generated puzzle. The key 
part of the code (in the file Generator.bsv) is: 

 
   Stmt try_to_generate =  

         seq 
            reset_puzzle; 
            load_solver; 
            while (True) 
             seq 

                run_solver; 
                if (!solver.isConsistent() || solver.isSolved()) 
                                          break; 
         add_one_given; 
             endseq 

         endseq; 
 
Stmt generate_puzzle = 
         seq 
            while (True) 
       seq 

                 try_to_generate;      
          if (solver.isConsistent()) break; 
                 $display("discarding puzzle."); 
             endseq 
            $display("successfully generated puzzle:"); 
            displaySudoku(getGrid(puzzle)); 
         endseq; 

 
Here try_to_generate is an FSM fragment used within the top-level generate_puzzle FSM.  In turn, 
try_to_generate composes its own smaller FSM fragments reset_puzzle, load_solver, run_solver and 
add_one_given.  Compare the clarity and ease-of-modification of FSMs specified this way with FSMs as 
traditionally expressed in RTL.   This is in fact partially a “brute force” mechanism for generating puzzles; 
we could have a whole separate discussion on the limitations of this approach and how to improve it. 

Flexibility for Refinement and Architecture exploration 

Compared to RTL, BSV’s higher level of abstraction dramatically improves capabilities for step-wise 
refinement and architecture exploration.  We have already mentioned several of these, but we repeat 
them here for emphasis: 

• Write the solver first, and test it, and then write the generator to use the solver. 

• Because of the parameterization, test it quickly with low-size puzzles before trying larger-size 
puzzles. 

• Write a simple solver first with simple tactics, test it, and gradually add new tactics to strengthen 
the solver. 

• Explore which tactics should be done in parallel vs. sequentially, using trivial changes to the FSM 
specifications, and see the effect on area, clock speed, and power consumption 

• Easily  
 
Many of these changes, if designing in RTL, would require such dramatic changes that they would be not 
be considered at all. 
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Finally, this example also illustrates how easy it is to incorporate C/C++ and other languages into the 
system using BSV.  The GUI is in Tcl/Tk, and socket communications between the GUI and the 
solver/generator is in C. 

Tour guide for the source code 

The complete source code distribution for BluDACu is available from Bluespec, Inc.   We do not expect 
someone who has not yet studied or been trained in BSV to follow every nuance and detail in the source 
code,  but with the explanations in this document plus the comments in the code, we hope you will be 
able to follow the general ideas and still appreciate the power of the language and see how far it goes 
beyond RTL.  We also hope that it will inspire you to learn and use BSV! 
 
You may wish to peruse the source files in the following (“bottom up”) order: 
 

TypeUtil.bsv A shorthand for the square of a parameter 

Sudoku.bsv Typedefs for Cells, Grids, Sudoku register grids, indexes, contraint groups, 

along with numerous “help” functions on these types 
Tactics.bsv All the tactic functions, plus their encapsulation into a mkTactics module 

that has a Tactics interface 
Solver.bsv The solver, encapsulated into the mkSolver module that has a 

SudokuSolver interface 
 
SolveTest2.bsv Small stand-alone testbench for solving one fixed puzzle of order 2 

SolveTest3.bsv Small stand-alone testbench for solving one fixed puzzle of order 3 

 
Generator.bsv The puzzle generator, encapsulated into the mkGenerator module that has 

a SudokuGenerator interface, and using the solver. 
 
GenerateTest2.bsv Small stand-alone testbench for generating one puzzle of order 2 

GenerateTest3.bsv Small stand-alone testbench for generating one puzzle of order 3 

 
The above are the key Bluespec SystemVerilog (BSV) files.  The remaining files in the distribution, in 
BSV, C, and Tcl/Tk, are for the GUI and its connection to the BSV code.  They are useful if you wish to 
see how to incorporate C code into a BSV system. 
 

Summary 

 
So, what does this say about SoC design for now and the future?  Although this example is a somewhat 
whimsical application of Bluespec SystemVerilog, it has some powerful meta-level messages. 

Expressive power: simplifying the Implementation of Complex Designs 

Hopefully you’ve got a taste of why Bluespec is a simpler and more scalable way of managing complex 
algorithms involving complex concurrency and interface protocols vs. RTL.  The Bluespec model of 
atomic transactions, atomic-transactional interfaces, strong static constraints and static elaboration is also 
the only one significantly improving the design of control logic and complex datapaths.  Such troublesome 
designs are: 
 

• The hardest to get right.  Managing complex concurrency with lots of shared resources (both local 
and across chip) is very hard to implement correctly.   Think about the challenges properly managing 
back pressure, interface protocols, race conditions, deadlock/livelock conditions... 

• The areas where most of the bugs (especially the subtle ones that later bite you) reside. 
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• The most prominent by far.  One of our customers surveyed their IP development roadmap and found 
that designs with control logic and complex datapaths represented 90% of their planned projects. 

 
Since it keeps you 100% in control of architecture and micro-architecture, Bluespec enables 
implementations that retain the quality of results of RTL, while at a much higher level of abstraction. 
 
Somewhat surprisingly, our BSV solver, parameterized and synthesizable into hardware, had fewer lines 
of source code than an unparameterized and of course unsynthesizable comparable solver (same 
strategy, same tactics) we wrote in C (both about 800 lines)!  We have seen similar comparisons for more 
serious applications like video and wireless codecs which are often originally written in C—the BSV code 
is often shorter, clearer, and of course synthesizable. 

Creating IP blocks that enable Extreme Reuse 

Bluespec enables extreme reuse through the creation of IP that is highly parameterized to support many 
optional capabilities, easy to customize correctly when changes are required, and interfaces that ensure 
proper connectivity and communication protocol automatically. 

Testing Software Early with Accurate Hardware 

The BluDACu generator and solver were developed in less than one man-week – and, the surrounding 
testbench/GUI took one week in addition.  With Bluespec, you can develop highly complex models and 
implementations significantly faster and with fewer errors than with SystemC or RTL.  And, because 
Bluespec keeps models and implementations in a single environment, you don’t have two environments 
to maintain.  As illustrated with BluDACu, the hardware runs directly with C/C++ software, testbenches 
and models.  This means you get a single environment to develop and maintain, you are up and running 
in a fraction of the time of other environments, and software gets to run with accurate designs. 

Not only do you get accuracy, but you also get speed.  Bluespec simulations in SystemC or Bluesim run 
natively at high-speeds.  And, if that’s not fast enough, Bluespec’s high-level constructs are fully 
synthesizable, which means you can run models and implementations on emulators or FPGA prototypes.  
While this may be a challenge with an error-prone RTL design, the correctness of a Bluespec design 
means you can safely do this significantly earlier. 

Changing the hardware-software partitioning tradeoff 

Complex IP blocks are often “relegated” to software because creating a hardware implementation is seen 
as too complex and risky, even though the software implementation is likely to be significantly slower 
and/or consume significantly higher power.   The expressive power, robustness and synthesizability of 
Bluespec changes this calculation. 
 
 
 
 
 
 
 
 
 

This is where Bluespec shines.  Everything else is just RTL. 
 

Can you afford not to take a closer look? 


